The first organic solar cells where based on an active layer made of a single material. By the absorption of light, strongly Coulomb-bound electron hole pairs where created, singlet excitons. As described in part zero, these have to be split in order to finally generate a photocurrent. In order to overcome the binding energy, one has to either hope on the thermal energy, or dissociate the exciton at the contacts. Unfortunately, both processes have a rather low efficiency: under normal conditions, the temperature is not high enough, and the sample thickness is much thicker than the exciton diffusion length. The consequence: excitons are mostly not dissociated, but recombine instead. This leads to luminescence, and light emitting solar cells do not belong to the most efficient… there is just not enough current output.
The introduction of a second layer was a quantum leap in terms of power conversion efficiency (though still on a low level): organic bilayer solar cells, presented in the mid eighties [Tang 1986]. The light is usually absorbed mainly in the so-called donor material, a hole conducting small molecule. The photogenerated singlet excitons now can diffuse within the donor towards the interface to the second material, the acceptor, which is usually strongly electronegative. A prominent example for an electron acceptor material is the buckminsterfullerene (C60).
Continue reading “How Do Organic Solar Cells Function? – Part One”