As an in-between, we’ll talk about a topic which will hopefully become more and more recognised by the organic photvoltaics community: the shortcomings of the established Shockley model, made for crystalline inorganic diodes, when applied on fitting organic solar cells.
The most important figures of merit describing the performance of a solar cell are the open circuit voltage, the short circuit current, the fill factor and the (power conversion) efficiency. The fill factor is given by the quotient of maximum power (yellow rectangle in the figure) and the product of open circuit voltage and short circuit current (white rectangle); it therefore decribes the “squareness” of the solar cell’s current-voltage characteristics. The efficiency is the ratio of maximum power to incident radiant power – typically radiated by the sun. E.g., a well-known detailed balance calculation for inorganic single gap solar cells gives a theoretical maximum of about 30% power conversion efficiency [Shockley 1961]. The upper limit for organic solar cells is somewhat lower, but that’s another story.
Continue reading “Intermediate: Current-Voltage Characteristics of Organic Solar Cells”