Links only

Hi, a link list just to keep you occupied;-)

Next week a round of referees will come to Würzburg to decide on another set of grant proposals, so I’ll go back to my preparations now…

Add to Connotea

Pseudosymmetry of the photocurrent physically relevant?

Two days ago, a paper considering the role of the “quasiflat band” case in bulk heterojunction solar cells by device simulations was published online [Petersen 2012]. It is critical of the pseudosymmetric photocurrent found and interpreted by [Ooi 2008] and later also ourselves [Limpinsel 2010]. In order to focus on the physical relevance of the (non)symmetry of the photocurrent, the paper by Petersen et al neglects a field dependent photogeneration. As some good points are raised, read the new paper if you are interested in the photocurrent.

[Update 2.4.2012] Another paper showing that band bending is not needed to explain the particular shape of the photocurrent: [Wehenkel 2012].

I will come back to field dependent photogeneration later, it is still intruiging: also here, the photocurrent should (and will be) complemented by pulsed measurements such as time delayed collection field, see e.g. [Kniepert 2011].

Add to Connotea

Charge transport in disordered organic matter: hopping transport

As I won a proposal today, I feel up to contributing once again some physics to this blog… I know, it has been a long long wait. So today it is time to consider some fundamentals of charge transport, as this is not only important for the extraction of charge carriers from the device PV in Japan(see earlier posts on mobility and efficiency, surface recombination velocity and photocurrent) but also the nongeminate recombination (see e.g. photocurrent part 2 and 3).

In disordered systems without long range order – such as an organic semiconductor which is processed into a thin film by sin coating – in which charge carriers are localised on different molecular sites, charge transport occurs by a hopping process. Due to the disorder, you can imagine that adjacent molecules are differently aligned and have varying distances across the device. Then, the charge carriers can only move by a combination of tunneling to cover the distance, and thermal activation to jump up in energy. In the 1950s, Rudolph A. Marcus proposed a hopping rate (jumps per second), which is suitable to describe the local charge transport. By the way, he received the 1992 Nobel prize in chemistry for his contributions to this theory of electron transfer reactions in chemical systems. Continue reading “Charge transport in disordered organic matter: hopping transport”


Hi there, I am late again, but nevertheless: a happy and successful year 2012!

I have collected a few links which might or might not interest you. Also, I plan to start with some scientific (background) posts again. Locust in ItalyLet’s see how this works out:-)

Press release of Heliatek: Heliatek achieves new world record for organic solar cells with certified 9.8 % cell efficiency. Evaporated small molecule tandem with area above 1cm2. Very good! Also, Mitsubishi Chemical has reached 10.1% efficiency on solution processed small molecules.

Nature looks back at the science year 2011: 365 days: Images of the year.

Interesting, although not related to physics: Syllabus for David Foster Wallace’s class “English 102-Literary Analysis: Prose Fiction Fall ’94”. Clear rules, yeah! Forgot who linked to it, sorry. Continue reading “2012”