Polaron, Polaron Pair, Exciton, Exciplex, …

I’ve talked a lot about polaron pairs and excitons lately, and will continue to do so, Venus Transitthat this time I’ll give short explanations of what I am actually talking about. Call it definitions… ;-)

A polaron is a charge, i.e., an electron or a hole, plus a distortion of the charge’s surroundings. In a crystalline inorganic material, setting a charge onto a site does not change the surroundings, as the crystal lattice is rigid. Not so in many disordered organic materials. Putting a charge onto a certain molecular site can deform the whole molecule. Moving the charge from this to another molecule means that first the energy for the deformation – the polaron binding energy or reorganisation energy – has to be mustered. The implication is that charge transport becomes more difficult, the charge carrier mobility becomes lower, … This process is also described as self-trapping. As a side note, it is often difficult to distinguish between the influence of polaronic self-trapping and of gaussian disorder, as both have a similar impact on the charge transport properties. This similarity is also reflected in the corresponding hopping rates used to calculate charge transport: Marcus theory is a function of the reorganisation energy, where as the Miller Abrahams rate [Miller 1960] is related to the energetic disorder of the density of states. The polaronic deformation can be quantified in terms of a (lattice) polarisation, or a phonon cloud, or just as the above-mentioned polaron binding energy. Mostly, however, when hearing polaron, think charge;-) See also what wikipedia has to say about polarons.

Continue reading “Polaron, Polaron Pair, Exciton, Exciplex, …”

Advertisement

For starters: Recombination

In disordered organic semiconductors, there is no band transport, as there are no delocalised, just localised charges. Consequently, there is no simple band-band recombination of free carriers, and no Shockley-Read-Hall recombination! Of course, there is still recombination going on, a lot of it;-) Church inside
Here I’ll just quote some definitions concerning different types of recombination, and get back with details later.

For a general classification we take a look at Kwan-Chi Kao’s book “Dielectric Phenomena in Solids“.
Looking for monomolecular recombination, we find

The recombination that involves one free carrier at a time, such as indirect revombination through a recombination center (e.g., an electron captures by a recombination center and then recombined with a hole, each process involving only one carrier), is generally referred to as monomolecular recombination.

In organic semiconductors, a recombination centre can for instance be a trapped hole, localised in a deep state; it can induce a monomolecular recombination with a mobile electron. Even knowing this, it still feels like bimolecular recombination, doesn’t it? ;-)

Continue reading “For starters: Recombination”